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1. Introduction 
The experimental measurements presented here describe the major features of the 

turbulence produced by shearing instability in a miscible, two-fluid system with a 
statically stable density difference. The parameter range is such that buoyancy forces 
have an important dynamical effect on the turbulence. The motivation for this study 
is the accumulating body of oceanic field measurements which suggest the importance 
of shear-induced turbulent mixing in the oceans of the world, particularly in coastal 
environments or where waters of different origin meet. The oceanic situation is, of 
course, more complicated than the laboratory simulation. The density stratification 
in the ocean is often produced by two diffusive constituents and the difference in these 
rates of molecular diffusion can be a source of energy for double-diffusive instabilities. 
There is usually horizontal shear present, and the shear may be all, or in part, time 
dependent on the scale of the turbulent event itself. These complications have been 
neglected, and one may regard the present experiment as applicable in the limit of 
steady shear applied on a time scale longer than the turbulent event, and of a magni- 
tude large enough to ignore any possible double-diffusive process. Two major ingre- 
dients are present; the shear flow, which supplies turbulent energy, and stable strati- 
fication which, in general, has an inhibiting effect upon the turbulence. 

2. Experimental apparatus and procedure 
2.1. Apparatus 

The experiment was performed in a water channel shown schematically in figure 1.  
Briefly , two parallel streams of water having different densities (salinities) and moving 
at different velocities are merged at the entrance to the channel. The resulting insta- 
bility and turbulence evolves spatially as the fluid is convected downstream. The test 
section is 10 by 10 by 160 cm and has a free surface to allow for the introduction of 
probes at any longitudinal location. Flow velocities within the channel may be varied 
between 1 and 15 cm/s and the freestream turbulence level is about 0.5 yo. Dye may be 
introduced into the boundary layer on the upper side of the splitter plate, thus marking 
the interface between the two streams. In  addition, the density field may be visualized 
using the shadograph technique. 

Figure 2 shows the geometry of the flowfield a t  the entrance to the test section. The 
initial shear region is characterized by an overall velocity difference AU and density 
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FIGURE 1. Sketch of the experimental apparatus. 

FIGURE 2. Initial shear layer geometry: initial Richardson number, 0.05 < Ri < 0.2; initial 
Reynolds number, Re x 300; maximum Reynolds number, 300 < R+*, < 1900; hai/7ii %- 1. 

difference Ap. The shear layer has an initial vertical length scale (maximum slope 
thickness) hi and the corresponding density scale is denoted as ri. The mean convection 
speed of the fluid in the channel is 8, the average density is pAV, and the gravity, g, 
acts vertically downward. Note that the centre of the shear region is displaced verti- 
cally by a small amount, 6, from the density interface. 

Consistent with the Boussinesq approximation, the density difference appears only 
in connexion with the gravity field as gAp/pAv. Including the kinematic viscosity, v, 
and the diffusion coefficient for salt D, the flowfield is uniquely determined by the six 
non-dimensional quantities 

Ri = gAph,/pAv(AU)a; Re = AUhi/v;  
SC = v / D ;  AUlD; €/hi; qilh,. 

Ri and Re are the initial Richardson number and Reynolds number and measure 
respectively the importance of buoyancy and viscosity upon the developing insta- 
bility. hi is the maximum slope thickness of the shear layer a t  x = l cm. The value of 
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Ri 
0-05 
0.075 
0.1 
0.125 
0.15 
0.2 
0-075 
0.075 
0.075 
0.075 

Rt? 
300 
300 
300 
300 
300 
300 
200 
250 
300 
350 

A f  - 
f AV 

0-0085 
0.0128 
0.017 
0.0213 
0.0255 
0.034 
0.0037 
0.0084 
0.0128 
0.0238 

TABLE 1. Summary of test conditions. For all the above cases A U / o =  1.10. 

hi determines the scale of the initial instability which visually appears a t  about 
x = 3 cm. Within the first few centimetres hi is almost constant (it grows less than 
15 yo between the splitter plate and d = 5 em). The quantities r i /h i  and elhi introduce 
additional degrees of freedom not discussed in previous experiments by Thorpe 
(1973a, b )  or Delisi & Corcos (1973) who considered the case TJh, x 1, e/h$ x 0. In  the 
present work, however, yi/hi << 1, €/hi x t and it will be shown that several important 
features of the turbulent mixing arise from this initial disparity in length scales. 

The Richardson number as defined above is a global measure of the importance of 
buoyancy. The distribution of gradient Richardson number, g(dp /dz ) /p (d  U/dz)2 ,  
through the sheared region would progress from zero values a t  the outer edges to a local 
maximum somewhere within. (The product Ri h.i /qi  would be the local maximum value 
of the gradient Richardson number for E = 0.) For most of the experiments, the Rich- 
ardson number alone was varied over the range 0-05 < Ri < 0.2. Four cases were run 
at a fixed R.i but a t  different values of Re to  test the sensitivity of the results to varia- 
tions in Reynolds number. Table I summarizes the test conditions. A discussion of the 
practical constraints which influence the choice of these test conditions is given in 
Koop (1976). 

2.2. Procedure 
Quantitative measurements of the flowfield were made a t  12-15 longitudinal locations 
by slowly traversing the mixing region in the vertical (2) direction with a hot-film 
anemometer and a conductivity probe (separated laterally by 1 cm). The hot-film 
probe used was a TSI 0.05 mm cylindrical sensor operated a t  constant temperature in 
the anemometer circuit described by Weidman & Browand (1975). The conductivity 
probe, similar to those discussed by Maxworthy & Browand (1975), was operated in an 
a.c. bridge a t  50 kHz, and had a measured resolution of about 0.3 mm. I n  addition to 
this sensor, a second, smaller conductivity probe subsequently referred to as the micro- 
probe, was used in one phase of the experiment for measuring the small-scale structure 
of the turbulence. I ts  resolution was measured to be better than 0.05 mm. The vertical 
descent rate varied between 0.003 and 0.01 cm/s, so that about 1800 large-scale 
structures were sampled in the 15-30 min required to cross t'he mixing region. Data 
were recorded on F M  tape, and later digitized a t  50 Hz. The microprobe data were 
digitized a t  300 Hz. 
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U+ (cm/s) 

FIUURE 3. Typical hot-film calibration. 

Constant salinity baths were used to calibrate the conductivity probe before every 
run. In  addition, the supply tank densities were continually monitored with sensitive 
hydrometers so the layer densities above and below the mixing region were accurately 
known. The hot film sensor was calibrated before and after each run, by allowing the 
instrument carriage, supported on an air bearing, to accelerate to terminal speed along 
the slightly inclined track. The hot film travelled through quiescent water and the 
velocity of the carriage was determined by differentiating the carriage position signal. 
This free fall operation was necessary to avoid unwanted probe vibration. A typical 
calibration result is shown in figure 3. The average variance of the data is about 0.15 
cm/s, which is roughly 1-2 % of AU. 

Mean profiles of velocity and density are computed in the data reduction program 
by evaluating 

N 

j - 1  
'iz(z) = ( 1 / N )  z u5, 

iw = (1/N)@,9 
and z = ( i / N )  Xz j ,  

where uj, p, and zj represent individual digitized samples of velocity, density and 
vertical co-ordinate. N is typically about 2000, which corresponds to an averaging 
time of roughly 40 s for each value of 2. Similarly, root-mean-square quantities are 
obtained by evaluating 

u ' (z )  == [Z ( 1 / N )  (uj-G(z)I2I', 
i 

and ~ ' ( 2 )  = EC ( ~ / N ) ( P ~ - P ( ~ ) ) ~ I ' -  
i 

These data are then normalized by AU and A p  respectively. 
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A convenient measure of the vertical extent of the mixing region is provided by an 
integral thickness, O,, defined as 

m 

0, = [l/(AU)z] [ (UB-;il(z))(U(z)-UT)dz. 
J -m 

The characteristic integral length scale at the entrance to the test section is O,, defined 
as 0, 3 0, (x = 1 cm). One can also define an equivalent density integral scale, 

ep = [l/(AP)23 Srn (PB - - P ( Z ) )  ( P ( 4  - P r )  dz.  
-03 

Another quantity which proves to be useful is the probability density function, 
P(p,  z ) ,  defined by 

N 

where H is the Heaviside step-function. P defines the percentage of time the density 
record at a given value of z lies within the window p and p + dp.  

One final parameter calculated in the data reduction program is a quantity called 
the mixedness, M ( x ,  z )  (Konrad 1976), 

At the vertical location where p = pAV, the mixedness becomes 

When fluid is totally mixed in the molecular sense M ( x )  = 1. If, on the other hand, the 
fluid is completely unmixed, M = 0. 

3. Flow visualization 
3.1. Initial instability 

The laminar shear region formed immediately downstream of the splitter plate is 
significantly thicker than the initial density interface. The temporal instability in 
such a system has been considered analytically by Holmboe (1962) and Hazel (1972). 
Experimentally, Browand & Wang ( 1972) investigated the spatial growth character- 
istics for the case where the density interface is positioned a t  the midpoint of the 
sheared region. An important result of these studies is the appearance of several 
modes of instability, each having a distinct character. Theoretically, for Ri less than 
about 0.08 the most unstable wave which develops is non-dispersive, and is the 
stratified analogue of the most unstable mode which occurs in a homogeneous shear 
layer (Rayleigh mode). For larger values of Ri however, another type of disturbance 
dominates. This mode (termed the Holmboe mode by Browand & Winant 1973) is 
dispersive, the degree of dispersion increasing with increasing Richardson number. 
Inviscidly, there is a range of unstable wave numbers for this mode which exists no 
matter how large the (maximum) Richardson number becomes. Hazel’s numerical 
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studies show that the Holmboe mode may be generated whenever the thickness of the 
shear region exceeds the thickness of the density interface by at least a factor of two. 

Redekopp (unpublished) has determined stability characteristics when the density 
interface is shifted away from the centre of the shear region (the case .s + 0). The 
appearance of an additional length scale causes the unstable Holmboe mode solutions 
to bifurcate, forming two non-contiguous unstable regions. Two solutions having 
distinctly different wavenumbers and comparable amplification rates are now possible. 
Again, both these solutions are dispersive waves. 

Figure 4 (a )  (plate 1) shows the appearance of the initial instability for Ri = 0.075, 
Re = 300. The fluid is moving from left to right with the bottom layer having the 
higher velocity. The horizontal lines in the background are 0.5 cm apart, and the 
vertical lines are separated by 2.5 cm. Dye is introduced at the top and bottom of the 
sheared region. At this value of Richardson number, the instability is qualitatively 
similar to the homogeneous case. The evolution of the initial disturbance is to concen- 
trate the existing shear layer vorticity into discrete lumps. This is probably possible 
because of the almost non-dispersive nature of the most unstable waves for this spa- 
tially growing instability. I n  figure 4 ( b ) ,  lines of constant phase are visualized by 
looking down from above the channel using a shadowgraph. The instability is ob- 
served to be quite two-dimensional. 

Figure 5(a)  (plate 2) shows the appearance of the shear layer when the initial 
Richardson number is about 0.19. Two dye tracers are positioned a t  the same vertical 
location in the centre of the shear region, but displaced laterally by 1 cm. The upper dye 
line exhibits features reminiscent of the lower Ri cases, with the instability acting to 
spatially concentrate the available vorticity. By contrast, the second tracer shows none 
of this structure, but rather has the appearance of an interfacial wave. (Figure 7 
presents the same case viewed using a shadowgraph. Here we see a preferential entrain- 
ment of upper layer fluid into the lower layer, which may be a result of the relative 
displacement of the initial shear and density profiles.) Observation of the interface 
from above as in figure 5 ( b )  shows the instability to be a complicated mixture of two- 
and three-dimensional propagating wave trains. Viewing sequences of photographs, 
there appear to be three distinct sets of waves: (approximately) two-dimensional 
waves with wavenumbers of about 1-5; waves with wave fronts a t  angles of about 
- + 30" from the stream direction and wavenumbers of about 3.5; and finally waves with 
wave fronts a t  angles of f 60" from the stream direction and wavenumbers of about 
1.7.  In  the direction of propagation, the wave speeds are respectively 0-5, - 0.3, and 0, 
where the wave speed is defined as 

Cr = [(distance travelled by wavefront)/At - O]/(AU/2). 

The different families of waves originate in different spanwise locations, and this 
may be due to slight spanwise irregularities in the thickness of the shear layer. Small 
lateral variations in hi of the order of f 6 % do exist, and it must be concluded that the 
nature of the instability is very sensitive to small, local changes in the Richardson 
number. The range near Ri z 0.2 may be particularly sensitive, for limited obser- 
vation at higher Richardson numbers show the instability to be more t,wo-dimensional 
and much less confused. The existence of oblique, dispersive waves in the range 
0 < Ri < 0.2 is not inconsistent with available theory, but at present, the theory is not 
sufficiently developed to allow detailed comparisons. 
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3.2. Active turbulence; collapse and relaminarimtion 
For initial Richardson numbers less than about 0.15, an active turbulent growth 
region follows the instability and is characterized by the presence of the large, quasi- 
organized vortical structures so familiar in the unstratified mixing layer, and by the 
superposition upon this framework of random, smaller scale irregularities (figure 6, 
plates 3-5). In  some respects the flow may be regarded as turbulent once these large- 
scale vortical features have become well developed. The continued growth of the 
turbulent region, for example, depends primarily upon the interactions of these large 
scale features and hardly a t  all upon the presence or absence of smaller scales of 
irregularity. Smaller qcale irregularities are produced first in the vortical core regions. 
The production of small scales is promoted by the interactions between the large-scale 
features, but even a t  slightly higher Richardson numbers, when these interactions 
are largely absent, the core regions still become irregular at small scales. The way in 
which surrounding fluid is entrained by the core regions (sketched in figure 18) creates 
IocaI regions of static instability, and this probably aids in the process of fine-scale 
generation. 

Typically, these large turbulent concentrations of vorticity undergo a series of 
interactions like the one shown in figure 6 ( b ) .  These photographs were obtained using 
a 16 mm film camera towed at  the mean convection speed 0, so that roughly speaking 
i t  was always viewing the same patch of fluid. Most often, two neighbouring structures 
pair to form a single, larger structure. Each time the interaction occurs, the mixing 
layer is substantially thickened, and the average spacing between the structures is 
roughly doubled. At some downstream point however, the process is halted, and the 
large-scale structure fragments and disappears. The turbulent fluid in these struc- 
tures becomes more or less uniformly distributed within the vertical confines of the 
mixing layer. Beyond this point, the turbulent region may actually decrease in thick- 
ness, and i t  is clear that the turbulence is no longer active. The smaller scale features 
take on a striated appearance under the straining of the flow. Figures 6 (i)-(j) 
(x = 25-45 cm) represents the point of maximum mixing layer thickness prior to the 
disappearance of the large-scale structure. 

The disappearance of the large vortices and the inability of the resultant flow to 
remain actively turbulent, even a t  much smaller scales, is the most important single 
observation. It emphasizes the crucial nature of the large-scale structure in the main- 
tenance of active turbulence, and also illuminates the mechanism by which a statically 
stable density difference, no matter how small, acts ultimately to destroy the turbu- 
lence. A simple physical explanation for the effect of stable stratification (but one 
which will need further elaboration) is that the flow induced by the vortical regions 
raises heavy fluid and depresses light fluid, as in figure 18. As the size of the vortices 
grows, a point is reached for which there is insufficient energy available to perform this 
task. Rather than equilibrate in amplitude, the entire turbulent structure is dest,royed. 

A different sequence occurs a t  values of the initial Richardson number larger than 
Ri = 0.15, but the end result is similar. Figure 7 (plates 6 and 7) shows a series of 
photographs a t  various downstream positions for an initial Richardson number of 0.2. 
The interfacial waves which are produced initially continue to grow in amplitude and 
eventually break at the crest. The crests are always initially associated with the high 
speed stream. (If the top layer is made to move faster, the waves will peak upward 
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instead of downward.) Breaking consists of ejection of low speed fluid (in this case 
lighter fluid) into the high speed side (heavier fluid). As noted earlier, this process is 
much more three dimensional and much less violent than a t  lower Richardson num- 
bers. Significant wave motions still exist a t  the end of the channel, figure 7 (h) ,  and, 
although the flow is clearlyrelaxing towards a laminar state, this is never quite achieved 
in the present apparatus. 

For initial Richardson numbers greater than 0-2, the process is qualitatively similar. 
Wave breaking in the apparatus is eventually suppressed at Richardson numbers of 
about 1.0, but this cessation is probably related to the relatively low value of the 
Reynolds number required to achieve large Ri. Reynolds number effects can be 
expected to become more important at high Richardson number because the growth 
rates are lower. The inviscid linear theory suggests that interfacial waves can always 
be produced having positive growth rates. For large enough Reynolds number, the 
amplitudes of these waves would presumably also be limited by waves breaking. 

4. Experimental results 
4.1. Integral length scales 

Measurements of mean velocity and density are used to calculate 8, and OP for the cases 
listed in table 1. Figure 8(a)  presents 8,/~9~ as a function of x/8, for fixed Re and Ri 
between 0.05 and 0.2. For low values of the initial Richardson number, one can identify 
two distinct regions of the flowfield which are, in some sense, separable. In the initial 
turbulent growth region, the shear layer grows by entrainment of fluid through vortex 
formation and pairing. A least-squares fit straight line gives a slope of 0.0177 k 0.001, 
which compares with 8, x 0.019 f 0.002 for the high Reynolds number, homogeneous 
mixing layer at the same A U l V .  This active turbulent region extends to the point of 
maximum shear layer thickness; roughly x/8, = 300-450, depending upon the value 
of Ri. The spatial extent of the linear growth region is sensitive to Richardson number 
because an increase in buoyancy destroys the large-scale structures at  positions closer 
to the shear layer origin. Beyond this point, the large-scale entrainment processes are 
suppressed and the mixing layer collapses and approaches a non-turbulent state. This 
relaxation or relaminarization region extends from the maximum thickness state to 
the end of the channel. 

As the initial Richardson number is increased beyond about 0.125, the growth 
departs from this previous description. There is practically no initial turbulent growth 
region. The layer is much thinner, and instead of attaining a well-defined maximum 
there is a more prolonged, gradual increase in thickness. This distinction between the 
low and high Richardson number result is traceable again to the two possible initial 
modes of instability. The more gradual increase in ep beyond x/Oi = 200 is also a result 
of the persistence of breaking interfacial waves which continues for distances of 

The measurements of 8,/8, as a function of longitudinal co-ordinates are shown in 
figure 8 ( b ) .  The variations of 8, are more complicated, and the results are not as 
easily interpreted. In  the early stages of mixing, the growth rate of dU compares well 
with that of the unstratified mixing layer, particularly for the four smallest initial 
Richardson numbers. However, 8, continues to grow beyond the point of maximum 
8,. Part of the reason for this difference is that the mean velocity profiles do not remain 

, 

%pi = 700-1000. 



Instability and turbulence in a stratijied Jluid with shear 

(a ) 
Integral thickness growth 
homogeneous flow 

6 

3 4  a 

2 

0 400 800 I zoo I600 
xio, 

I?. ~ Integral thickness growth 

/ I \ Iiomogeneous flow 

143 

~ 

400 800 1200 I600 

rie, 
FIGURE 8. Density integral thickness (a), and velocity integral thickness ( b ) ,  vs. downstream 
distance for various initial Richardson numbers. 0, Ri = 0.05; 0, Ri = 0.075; 0, Ri = 0.1; 
4, Ri = 0.125; a, Ri = 0.15; 0 ,  Ri = 0.2; Re = 300. Lines labelled integral thickness for 
homogeneous mixing layer’ use the results summarized by Brown & Roshko (1974). 

similar in shape through and beyond the point of maximum O p  (see figure 10). This 
causes a change in 13, which is not (necessarily) related to a physical thickening of the 
layer. 

4.2. Mean velocity and mean density projiles 
Figure 9 presents profiles of mean density p ( z )  for several values of x/B, for the case 
Ri = 0.075, Re = 300. The data a t  each station have been shifted so that i j  = pAV at 
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FIQURE 9. Mean distribution of density for Ri = 0.075, Re = 300. Downstream distances 
z/@,are: D, 115; D, 173; 0, 229; 0, 287; 0, 343; D, 430; D, 516; 0, 862. 

0 

-8 t 
FIGURE 10(a). For legend see next page. 
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FIGURE 1 
x/8, are: 
distances 

z = 0. The normalized density profiles are similar over the entire downstream range, 
115 < x/Bi  < 860. This is quite surprising since the physical appearance of the flowfield 
varies significantly over this range ofx. It must be concluded that the mean density 
profiles are insensitive to the different physical processes which are important in 
certain regions of the flow. Figure 10 presents similar data for the normalized velocity 
profiles U ( z ) .  For x/Oi < 300 (figure lOa), the mean velocity distributions possess 
similarity. The solid curve is the data obtained by Liepmann & Laufer (1947) for a 
homogeneous mixing layer. 

The mean velocity profiles downstream of x/Bi = 300 are shown in figure 10 ( b ) .  The 
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-0.8 

FIGURE 11. ( a )  Vertical location (referred to the position of the splitter plate) of the point in the 
mean velocity profile where G(z)  = g .  ( b )  Difference in vertical position of ' i i ( z )  = and p(z) = p A V .  
The symbols are the same as in figure 8. 

shape of the profiles is quite distinct from the upstream data. Also, no similarity is 
established. The abrupt change in profile shape is related to  the dominance of buoyancy 
forces, and to the redistribution of momentum produced by the collapse of the large- 
scale structure. 

Two other pieces of information associated with the averaged profiles is presented: 
the location of the point where the velocity is equal to  the mean velocity, figure 11 (a) ;  
and the location of the corresponding point in the density distribution, figure 11 ( b ) ,  
For x/Oi > 600, the points where p = pAv and u = g a r e  coincident. 

4.3. Density and velocity ,fluctuations 

The maximum values of the r.m.5. density and velocity fluctuations at each down- 
stream position are presented in figure 12 for several values of the initial Richardson 
number. (Note that p ' / A p  has an absolute maximum value of 0.5.) Beyond the point 
of maximum thickness, all of the data collapse to a single curve provided Ri c 0.125, 
and show a decay proportional to (x/B,)-%. This is the same rate of decay found for 
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FIGURE 12. Root-mean-square velocity and density fluctuat,ioris with downstream distance. The 

symbols are the same as in figure 8 .  -, Ri < 0.125; - - - - ,  Ri = 0.125; --, Ri > 0.125. 
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Y l Q ,  

FIGURE 13. Density integral thickness as a function of downstream distance, Ri = 0.075. Initial 
Reynolds number and corresponding maximum Reynolds number are: 4, Re = 200, ReM,, = 
1000; 0, Re = 250, Re,,, = 1200; 0, Re = 300, Re,,, = 1450. 

scalar quantities in isotropic grid turbulence, as measured by Lin & Pao (1979) 
and discussed by Hinze (1959, p. 237). Again the different character of the high 
Richardson number data is evident. 

Similar data is presented for the velocity fluctuations. The data in the relaminariza- 
tion region fall roughly on a single curve for all Richardson numbers. A solid line with 
slope -2 fits the data as well as any, although there is too much scatter and too little 
data, to draw much of a conchsion. 
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FIamE 14. Average number of pairings us. initial Richardson number, Re = 300. Bars indicate 

approximate confidence in measurements. 

4.4. Variation of Reynolds number 

To what extent are the growth and decay regions sensitive to changes in Reynolds 
number? One might anticipate a minor role for viscosity in the turbulent growth 
region, since here the dynamics are controlled by large-scale structures which are not 
sensitive to changes in Reynolds number. However, viscosity and diffusion of salinity 
will probably both be important in the relaminarization region. Figure 13 gives the 
value of the density length scale, O,, as a function of downstream distance for 
several Reynolds numbers with the initial Richardson number fixed a t  Ri = 0.075. 
In the turbulent growth region, all of the data show roughly the same rate of growth, 
and all compare well with unstratified high Reynolds number mixing-layer data. One 
also sees that the maximum thickness and the location of the maximum thickness point 
are both relatively insensitive to Reynolds number - a t  least over the limited range 
investigated. In the relaminarization region, though, a definite Reynolds number 
effect is noted, 8, relaxes to smaller asymptotic values as Re decreases. 

5. Discussion 
5.1. Turbulent growth to maximum thickness 

The turbulent growth regime is dominated by the formation and interaction of discrete 
vortical structures, or vortices. Much information about this pairing process may be 
obtained by analyzing the spatial and temporal history of the vortices. For example, 
data taken from a 16 mm film for the case Ri = 0.05, and displayed in an x ,  t plot shows 
that the first pairing occurs at a mean location of x/O, = 170 with a standard deviation 
of & 90. Virtually all the vortices (97 yo) undergo a t  least one pairing, and often another 
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FIGURF 15. Average vortex spacing, L*, a t  point of maximum mixing layer thickness versus 
initial Richardson number Re = 300. L* = gApL/npA,(AU)2, whero L = physical vortex 
spacing. Bars indicate approximate confidence. 
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FIGURE 16. Richardson number a t  point of maximum mixing layer thickness, 

RiKAX = gAphMAX/pAV(Au)a 

vs. initial Richardson number for Re = 300. The relation h,,, x 5(0p)MAx is used. 

interaction occurs. The mean location of this second pairing is x/Oi = 350 f 180. The 
second pairing is a much more intermittent phenomenon, with only 56 yo of the initial 
vortices experiencing more than a single interaction prior to achieving the maximum 
thickness state. One may quantify the average number of pairings by considering the 
average rate at which vortices convect past the point of maximum thickness relative 
to the rate at which they are formed initially. Because of the intermittency of pairing, 
the average number of pairings is not necessarily an integer. The average number of 
pairings is shown plotted in figure 14 as a function of Ri. Beyond Ri = 0.125, buoyancy 
forces have nearly suppressed the pairing process completely. 
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0 Present data 

0 Thorpe (1973 6 )  
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Ri 
FIQURE 17. Time to point of maximum mixing layer thickness w8. initial Riohardson number for 

Re = 300. The normalizing time r = pav AUlgAp. 

The average vortex spacing a t  the point of maximum amplitude can also be deter- 
mined. Let 

where L is the average distance between adjacent vortex cores. (The 1/n factor is 
introduced for consistency with the notation of a theoretical model to be discussed 
subsequently.) The non-dimensional spacing at the point of maximum thickness is 
shown in figure 15. This non-dimensional spacing is close to 0.3 and only changes by 
20 yo for a threefold increase in Richardson number. 

One may further quantify conditions a t  the maximum thickness by examining the 
value of the Richardson number, RiMA, defined as 

L* = gApL/npAV(AU)', 

RiMAX = gAphnaX/pAV(A u)2, 

where hMAx is the maximum slope thickness of the mean density profile. Figure 16 
presents the value of RiMAX as a function of initial Richardson number. (hMAx is 
determined from the 8, data shown in figure 8a by use of the relation hMAx z 58,). 
For Ri < 0.1, 'RiMAX has the constant value of 0.32 & 0.02. This result is consistent 
with the data of Thorpe (19733), whose experimental conditions were somewhat 
different from the present experiment. The maximum Richardson number decreases 
steadily to a value of approximately 0.15, as the initial Richardson number increases 
beyond 0- 1.  The process of interfacial wave breaking at high Richardson numbers is 
very different from the vortex pairing process at low initial Richardson numbers. - 

The length of the turbulent growth region can also be established in a useful non- 
dimensional form. Since the maximum thickness state is a direct result of the growing 
importance of buoyancy, any non-dimensionalization must include the factor gAp/p,,. 
The distance xMAX to the location of the point where 8, is a maximum, is converted to a 
time by convecting with the mean speed, 8. This time is normalized by the buoyancy 
time scale, 7 = A U/(gAp/pAv) to give a non-dimensional time, (t/T)M*x, which locates 
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FIQURE 18. Schematic diagram of vortex core regions separated by vorticity producing braid. 

the maximum thickness point. The results are shown in figure 17 for Ri ,< 0.125. (For 
Ri > 0-125, no well-defined location exists for the maximum thickness state.) The 
duration of the turbulent growth region is limited to about 6-7 non-dimensional time 
scales, independent of the initial Richardson number. The results of Thorpe (19733) 
are in good agreement with this conclusion. 

5.2. Experimental comparisons with the model of Corcos & Sherman (1976) 

Recently, Corcos & Sherman have developed a model to explain how buoyancy limits 
the maximum thickness of the mixing layer. The sketch in figure 18 shows two vortical 
core regions which produce a highly strained region between, often referred to as the 
braid. According to the model, vorticity is produced baroclinically within the braid 
region and transported to the vortex cores. Within the core region vorticity is des- 
troyed through the entrainment of ambient fluid which, by lifting heavy fluid, and 
depressing light fluid, produces a torque that is in an opposite sense to that of the fluid 
rotation (vorticity). In  the absence of interactions, the growth of the vortex core 
regions will equilibrate at  a maximum amplitude such that the rate of vorticity trans- 
port out of the braid is just balanced by baroclinic generation within the braid. This 
limiting amplitude or thickness is predicted to be 

R i M A X  = L*(l -L*), 

where Ri,,, and L* have previously been defined. The circulation about the core, 
expressed as a fraction of the total circulation (a constant), is given by 

r,/r = i -L*. 

The non-dimensional time to achieve maximum thickness is also a function of L* only. 
The observed value of the vortex core spacing a t  the point of maximum thickness is 

about L* w 0.3 €or initial Richardson numbers below 0.125. Using this value of L*, 
Corcos & Sherman would predict a value of RiMAX = 0-33 which agrees well with the 
experimentally determined value of 0.32 & 0.02. The theory further predicts a value for 
the core circulation, r,/r w 0.7; a t  maximum thickness, 70 yo of the total circulation 
resides in the core regions and 30 yo resides in the braid regions between the cores. 

This model allows for vortex growth by entrainment, but does not include the 
observed nonlinear (pairing) interactions between adjacent vortex structures. It could 
be argued that the model does describe conditions for equilibrium between baroclinic 
generation in the braid and destruction in the core, and should adequately represent 
vortex growth between pairings. However, the model does not explicitly include the 
dynamics of vortex interaction and there is no a priori way to theoretically choose the 
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FIGURE 19. Schematic diagram of core and braid circulation during the time 
evolution of the mixing layer. 

appropriate value of L* (and, hence RiMAX) which characterizes the maximum thick- 
ness state. In  our opinion, the relative distribution of circulation between core and 
braid is the significant feature of the maximum thickness state. The experimental 
results suggest that vortex pairing can proceed until the circulation about the core 
regions falls below (approximately) 70 % ; then the large-scale vortical interactions 
can no longer be maintained and the mixing layer disintegrates. A sketch of the 
time history of the circulation about the core and braid is presented in figure 19. 

Initially, the vorticity is uniformly distributed in the laminar shear flow, and, after 
collapse of the large structure, it  is again uniformly distributed. Thus, the circulation 
about core and braid must begin and end at the value of 0.5. The initial instability 
produces a large increase in core circulation and a corresponding decrease in circulation 
around the braid. Core circulation is larger for smaller values of the initial Richardson 
number. Pairing proceeds and the mixing layer thickens while the core circulation falls 
by steps toward the value 0.7 - the termination of the pairing process and the disinte- 
gration of the large-scale structure. This empirical addition to the theoretical result of 
Corcos & Sherman accounts for the pairing process and eliminates the need to deter- 
mine L*. Any L* less than (approximately) 0.3 is a theoretically acceptabIe spacing at  
some stage of the process, but the mixing layer will grow until L* w 0.3, RiMAX w 0.32. 
(The theoretically predicted time to attain this maximum thickness is about 47 to 57 
which is also in reasonable agreement with the experimental results although the 
pairing is not explicitly considered !) 

5.3. Turbulent entrainment and molecular diffusion 

One of the most important products of the turbulent event is the resultant irreversible 
mixing of solute which takes place. A distinction must be made between fluid entrained 
into the mixing layer, which occurs as a result of the organized motions of the large- 
scale vortices, and fluid which is mixed to molecular scales. A parcel of fluid can have 
its density altered only as a result of molecular diffusion, and this change in density 
does not occur instantaneously a t  the time the fluid parcel enters the layer. Rather, a 
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FIGURE 20. Isometric projections of the density probability density function, P ,  for Ri = 0.075, 
Re = 300. (a) z / O i  = 170; ( b )  z/Oi = 430; (c) z/O+ = 690; ( d )  z/Oi = 1150. 

P ( t )  

FIGURE 21. Sketch of instantaneous density trace as a function of time. 

gradual diffusive exchange takes place, which is only made efficient in the turbulent 
flow by the enormously increased surface area available to the diffusing constituents. 

The extent of molecular mixing can be visualized by isometric plots of the proba- 
bility density function (of density). An example is shown in figure 20, for four down- 
stream locations at an initial Richardson number of 0.015. At the first location, the 
probability distribution is bimodal: the fluid entrained into the layer has a very small 
probability of having a density other than that of the top and bottom layers. In effect, 
the local instantaneous density swings alternately between p N  and p T .  The mean 
density measures the relative proportion of time spent in each state. The distribution 
at the second location, close to the point of maximum mixing-layer thickness, still 
shows relatively little molecular mixing. At subsequent downstream locations, the 
original bimodal structure gradually evolves into a single, peaked probability density. 
At the final station, for any value of z within the mixing region, the probability appears 
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FIauRE 22. Degree ofmixedness, M ( z )  (defined in s2.2) as a function of downstream distance for 

Ri = 0.076, Re = 300. For complete mixing M ( z )  = 1 ;  for no mixing M ( z )  = 0. 

to  be roughly symmetric about the maximum value. Here the probability peak approx- 
imately describes the mean density profile, and the density fluctuations are closely 
concentrated about this mean distribution. 

One relative measure of the degree of the molecular mixing is embodied in the 
mixedness parameter defined in 92.2. I n  the sketch below, figure 21, a density time 
trace is illustrated. The superimposed square wave is the form of the density variation 
if no mixing has occurred. The mixedness is defined as the ratio of the hatched area to 
the total area under the square wave. Mixedness is zero when no molecular mixing has 
occurred, and is unity when all fluctuations are absent and the density assumes the 
value of the mean density, p ( z ) .  (In reality a density probe measures density as an 
average over some small fluid volume which depends upon the size of the probe. Such 
a probe can make no inference about mixing on scales smaller than this resolving vol- 
ume.) 

The mixedness measured by the microprobe along the centre-line of the channel, 
where p = pAV, is shown in figure 22 for an initial Richardson number of 0.075. The 
results are similar to  those obtained from the probability distributions. Mixedness is 
initially low and rises rapidly only after the collapse of the large-scale structure. One 
possible explanation for the initially low value of mixedness is that, in the actively 
turbulent region, fluid is entrained a t  such a rapid rate that there is a preponderance 
of unmixed fluid. The Reynold’s numbers are relatively low, and the smallest scales 
present in the active region are much larger than one would estimate using an 
equilibrium, homogeneous turbulence model. With the same probe used to measure 
the mixedness, the longitudinal Taylor microscale was measured as a function of 
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distance for Ri = 0.075, Re = 300. 

downstream distance along the centre of the mixing region, figure 23. (The linear 
dimension of the resolving volume for this probe is of the order of 0.05 mm and is 
consequently much smaller than the scales being measured.) The actively turbulent 
region is characterized by a decreasing microscale with increasing downstream 
distance. For a self-similar flow, the microscale should grow with increasing down- 
stream distance. This opposite behaviour suggests insufficient time is available to 
establish similarity for the small scales. 

Downstream from the point of maximum thickness, the turbulence decays and the 
microscale begins to  increase. Mixedness also increases rapidly in this region (figure 22) 
because the entrainment of new fluid has virtually ceased. Now there is competition 
between molecular mixing (diffusion) and the tendency for unmixed fluid to return to 
the layer in which it originated. Examples of the instantaneous vertical distribution of 
density a t  x/Oi z 1000 are shown in figure 24 (plate 8) for a Richardson number of 
0.075. The data were obtained by rapidly traversing the mixing layer with a conduc- 
tivity probe and simultaneously taking a photograph. Although small-scale micro- 
structure is still present as a result of the turbulent event, on the whole the density 
variation is rather smooth with no sharp discontinuities separating well-mixed layers. 
A measure of the thickness of the mixed region, and consequently of the total mixing 
which has taken place upstream, is given by an integral of the mixedness; 

6 = t l M ( z ) d z ,  with p = pAV, p(z , t )  = p .  
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FIQURE 25. Integral thickness of the final mixed region, S,, normalized by (a )  hi, and (a) SMax, 
as a function of the initial Richardson number. Re = 300. 

An exact determination of the total mixing requires a knowledge of the position of the 
dividing streamline at  the downstream location. Insufficient information is available 
to locate the dividing streamline, and the computation here centres the distribution 
at the point where p ( z )  = pAV.  The value of 6 is now underestimated; when the profile 
is anti-symmetrical about the average density, 6 represents the lowest possible value 
of mixing at each Richardson number. 

The values of af/h, a t  the last downstream location x / B i  z 1000-1400, are shown 
plotted in figure 25 (a )  as a function of the initial Richardson number. The amount of 
mixed fluid first decreases rapidly with increasing Richardson number, primarily due 
to the decreasing amount of entrainment in the turbulent growth region, and then 
levels off. The diminishing slope a t  larger values of Richardson number probably 
reflects the transition to wave breaking; a different process from the roll-up and col- 
lapse a t  lower Ri. Figure 25 ( b )  shows the Richardson number dependence of 6,/6,,,, 
where S,,, is the value of 6 at the point of maximum mixing layer thickness. The 
general decline of Sf/SMAX with increasing Ri can be understood as ti greater tendency 
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FIGURE 26. The ratio of turbulent-to-laminar diffusivity m. initial Richardson numbers. 

for unmixed fluid to return to its point of origin, and a consequent shortening of the 
time available for diffusion to take place. 

Less information is available on the effect of varying Reynolds number, but the 
additional experiments a t  Ri = 0.075 (figure 13) do illustrate that lower Reynolds 
numbers produce smaller amounts of mixing. The viscous decay of the turbulent field, 
as well as the buoyant redistribution of fluid, are both important in determining the 
amount of total mixing. The present data are not extensive enough to allow detailed 
conclusions about this complicated interplay, but a reasonable upper bound estimate 
of the total mixing can be made, as discussed in the next section. 

5.4. Extending molecular mixing results to larger Reynolds numbers 

It was suggested in the preceding sections that the turbulent event can be roughly 
divided into two parts: (1)  the active turbulent region where only a fraction of the 
entrained fluid is mixed to molecular scales; and (2) the turbulent decay region where 
the bulk of the diffusion occurs. Can these concepts be extended to include other 
Reynolds numbers and other Schmidt numbers 1 First consider the actively turbulent 
portion of the flow. The interaction with the buoyancy field is of no consequence and 
several important results from recent experiments by Konrad (1976) and Briedenthal 
(1978) can be used. In a high speed mixing layer flow between dissimilar gases 
(Sc = 0 ( 1 ) ) ,  Konrad (1976) has observed center-line mixedness values of approxi- 
mately 0.50. At a Reynolds number, AUhlv ,  between lo4 and 2 x lo4, a discrete 
transition to smaller scales occurs, and the mixedness is increased to about 0.60. 
Apparently, no further change in mixedness occurs with additional increase in 
Reynolds number. Breidenthal (1978) has observed the same transition to small 
scales by measuring product formation in a dilute phenolphthalein solution with 
Xc = O( 103) .  The centre-line mixedness values were negligibly small below the tran- 
sition Reynolds number, and lie well below the Sc = O( 1) values at higher Reynolds 
numbers (at least to Re = 5 x lo'). It is possible to conclude that there will always 
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be a significant portion of unmixed fluid in the actively turbulent region, especially 
for larger Schmidt numbers. (For thermally stratified waters, Sc = 0(10), and the 
mixedness will still be small.) 

The termination of the actively turbulent region supplies the initial condition for 
the subsequent downstream diffusion by bringing into close contact a certain quantity 
of fluid, i.e. that fluid entrained into the mixing layer at the point of maximum 
thickness. The quantity of mixed fluid was earlier expressed as the integral thickness, 
S,. It can also be expressed in the form of an equivalent turbulent diffusivity (Thorpe 
1973b). The equivalent diffusivity is given by 

Thus over the period of time, t, (or distance x,), the mixed region grows as if it  were 
diffusing at the average rate D,. The equivalent diffusivity can be made non-dimen- 
sional with an appropriate length scale and velocity scale - say hi and A U .  The non- 
dimensional diffusivity can be expressed as a function of all other important non- 
dimensional variables, 

DT/AUhi = f(Ri,  Re, Sc) .  

The ratio DT/D is the equivalent turbulent diffusivity divided by the molecular 
diffusivity and is related to the Cox number found in oceanographic literature. Using 
the above result, this ratio is 

DT/D = Re Scf (Ri, Re, Sc), 

or, incorporating the Schmidt number dependence in some new functional, 

DT/D = Reg(Ri, Re, 8;). 

Diffusivities for this single, isolated turbulent event are plotted in figure 26 as a 
function of the Richardson number. We have chosen to plot D,/DRe to remove the 
obvious portion of the Reynolds number dependence. The results illustrate that, al- 
though the mixing falls off rapidly with increasing Richardson number, it does not 
fall to zero. An additional upper bound estimate on the amount of mixing can be made 
simply by replacing the final value of S, S,, with the larger value at the point of maxi- 
mum thickness, a,,,. The rationale is that at sufficiently large Reynolds numbers, 
or smaller Schmidt numbers, all of the fluid entrained in the turbulent growth 
region could ultimately become mixed in the molecular sense. These results are shown 
plotted as the upper bars in figure 26. 

6. Concluding remarks 
We have attempted to study some of the characteristics of turbulence produced in a 

stratified fluid for conditions which might approximate those found in the ocean. It is 
apparent that Richardson number, Reynolds number and Schmidt number have an 
important influence on the properties of the turbulence, and it is probable that oceanic 
mixing, occurring a t  Reynolds numbers of O( 10 000-50000), is similarly dependent. 
The problem is thus complicated by the number of parameters involved including the 
several geometrical features which define the initial instability. We had elected the 
‘broad brush ’ approach, but were truly overwhelmed by the size of the task, Much of 
the parameter space a t  larger Richardson number and larger Reynolds number remains 
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to be studied, as well as the effect of varying Schmidt number. The collapse and relami- 
narization process deserves more careful scrutiny, and the similarity between this 
process and the decay of grid-produced turbulence should be explored. We were also 
unprepared for the complexity of the instability which appears in certain Richardson 
number ranges. There seem to be regions where linear, three-dimensional waves can 
exist. Such three-dimensional instabilities have often been ignored in the study of 
parallel shear flows. In  this case, a profitable approach would be to combine an experi- 
mental and theoretical effort. 
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FIGURE 4. General appearance of the initial instability; Ri = 0.075, Re = 300. (a) Side view 
with dye injeoted above and below the shear region. ( b )  Wave fronts viewed from above using a 
shadowgraph. 

KOOP AND BROWAND (Facing p .  160) 



Journal of Flztid Mechanics, Vol. 93, part 1 Plate 2 

FIG- 6. General appeeranae of the initial ktability; Ri = 0.20, Re = 300. (u) Side view, both 
dye lines below the shear region but separated laterally by 1 am. (Waves have been enhanced 
with ink.) ( b )  Wave fronts viewed from above using 8 shadowgraph. 
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FIQURE 6. Downstream evolution of the mixing layer for Ri = 0.04, Re = 300. Flow is visual- 
ized with dye; the camera is towed at the speed 0. The following x locatione correspond to the 
longitudinal position of the picture centre in cm: (a, b )  6; (c )  6; ( d )  7.6; (e) 10; (f) 12.6; (8) 16; 
(h) 20; ( i )  26; (j) 46; (k) 80; (1) 120. 

KOOP AND BROWAND 



Journal of Fluid Mechanics, Vol. 93, part 1 Plate 6 



Journal of Fluid Mechanics, Vol. 93, part 1 Plate 7 

F I a m  7. Downstretun evolution of the mixing layer for Ri = 0.20, Re = 300. Flow is visual- 
ized with a shadowgraph; the oamera is towed at the speed g. The following x locations cornea- 
pond to the longitudinal position of the picture centre in cm: (a) 12.5; ( b )  16; (c) 19; (d) 27.5; 
(e) 42.5; (f) 57.6; (9) 78; (h) 127. 
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FIQURE 24. Examples of instantaneous density distribution at far downstream stations for 
Ri = 0.075 and various Reynolds numbers. (i)  z/O, = 1400, Rh, = 1000; (ii) z/Oi = 1200, 
Rh,,  = 1500; (iii) "/or: = 1000, Re,,, = 1750. 


